If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+4X=0
a = 1; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·1·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*1}=\frac{-8}{2} =-4 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*1}=\frac{0}{2} =0 $
| 2(x+5)=4x+12 | | Z^2+4j=0 | | d-8÷3=d-3÷2 | | 4x+6=12+3x | | -5t=-18 | | 5z-5=3z+11 | | 3/4y=2/3y | | (x+10)(x-6)-(x-1)(x+1)=1 | | (2x-4)(7x+8)=0 | | 6x+7=x+17 | | (-5t-18)/6=0 | | (-2x+6)(x+3)=0 | | a=(480*3)/(9,5*31,5+(9,5-a)*(31,5-a)+(9,5*31,5*(9,5-a)*(31,5-a))^(1/2)) | | -5t+-18/6=0 | | 10x-9=3x+5 | | 11a+8=13a | | 3x-4=5(2x-5) | | 2.4x-12=8.4x+42 | | 2(t+3)/3=(3t-8)/2 | | 3m+1/2=3/8+m | | a^2-3/4a+2=0 | | 3x+10=40−2x | | 0.18+0.3m=0.32-0.4m | | 5d+45=10d | | 24x+3=11 | | 3x+57=12 | | 5a+2=2a+10 | | x/3-x/5=3/5 | | (5/100)=(x/5) | | x/3-x/2=16 | | 2+x/2=3-x | | 0,3x+4=2-x/3 |